December 06, 2002
Space Tug May Rescue Astra 1K Telecom Satellite

Orbital Recovery Corporation is proposing that their Geosynch Spacecraft Life Extension System (SLES)TM "space tug" be used to save the stranded Astra 1K Telecommunications Satellite.

PRESS RELEASE

ORBITAL RECOVERY CORPORATION OFFERS SPACE RESCUE FOR STRANDED ASTRA 1K TELECOMMUNICATIONS SATELLITE

Washington, D.C., Luxembourg, December 5, 2002 - Orbital Recovery Corporation has proposed an ambitious rescue plan for ASTRA 1K -- one of the world's largest telecommunications satellites -- that was stranded in low Earth orbit last week after its launch vehicle malfunctioned.

The salvage mission would use Orbital Recovery Corp.'s new "space tug" -- called the Geosynch Spacecraft Life Extension System (SLESTM) -- to boost ASTRA 1K from its current 290-km. circular orbit to the desired 35,000-km. operational altitude for telecom satellites.

Orbital Recovery Corp. has been in significant discussions with the stakeholders concerned with the future of the Astra 1K spacecraft, who have indicated a significant interest in the company's proposed solution to recover this massive satellite for normal operation.

The SLES would be launched in approximately 20 months for a rendezvous and docking with ASTRA 1K. Once firmly attached to the stranded telecommunications satellite, the space tug will use its own propulsion system to raise ASTRA 1K's altitude and reduce its inclination to the Clarke Belt orbital plane -- allowing the spacecraft to function for up to its original 13-year expected mission lifetime in geostationary orbit.

"Our SLES is perfectly tailored for the rescue of ASTRA 1K, which is an extremely expensive asset that unfortunately is useless in its wrong orbit," said Orbital Recovery Corp. Chief Executive Officer Walt Anderson. "We have run simulations of the rescue mission that validate its feasibility, and we are ready to work with SES ASTRA in Luxembourg and with the insurance sector to make the flight a reality."

Definition work on the SLES has been completed by Orbital Recovery Corp., which is now creating its industrial team by seeking competitive bids for spacecraft hardware and systems from international suppliers. Earlier this month, the company announced its selection of the DLR German Aerospace Center's robotic technology for the SLES docking and linkup with telecom satellites in orbit. In October, Aon Space joined the Orbital Recovery Corp. team to provide insurance brokering and risk management services.

The SLES is a modular spacecraft that can be adapted to operate with a full range of three-axis telecommunications satellites -- from the small relay platforms to massive 5-metric ton spacecraft such as ASTRA 1K. Proven, off-the-shelf hardware will be used in production of the SLES to keep costs down and ensure high reliability. It will be built around a main bus that contains the spacecraft control/management systems and the primary ion propulsion system.

In addition to the rescue of stranded satellites, the SLES is designed to extend the operating lifetimes of telecommunications satellites in geostationary orbit that routinely are junked when their on-board fuel supply runs out. Orbital Recovery Corp. has identified more than 40 spacecraft currently in orbit that are candidates for life extension using the SLES.

The first SLES mission is targeted for 2004 on the ASTRA 1K rescue flight, with two more deployments the following year and three annually beginning in 2006.

Orbital Recovery Corp. has offices in Washington, D.C. and Los Angeles, and will add an Asia-Pacific presence in early 2003. More information on Orbital Recovery Corp. is available on the company's Web site: www.orbitalrecovery.com.

Images of the SLES can be found here.

About the SLES:

The SLESTM

Telecommunications satellites typically cost $250 million - and they are designed for an average useful on-orbit life of 10-15 years. Once their on-board propellant load is depleted, the satellites are boosted into a disposal orbit and decommissioned, even though their revenue-generating communications relay payloads continue to function.

Orbital Recovery Corporation's Geosynch Spacecraft Life Extension System (SLES)TM is a novel concept that will significantly prolong the operating lifetimes of these valuable telecommunications satellites.

The SLES will operate as an orbital "tugboat," supplying the propulsion, navigation and guidance to keep a telecom satellite in its proper orbital slot for many years. Another application of the SLES is the rescue of spacecraft that have been placed in a wrong orbit by their launch vehicles, or which have become stranded in an incorrect orbital location during positioning maneuvers.

The SLES is designed to easily mate with all telecommunications satellites now in space or on the drawing boards. After launch, the SLES will rendezvous with the telecommunications satellite, approaching it from below for docking. The SLES will link up using a proprietary docking device that connects to the telecommunication satellite's apogee kick motor.

Apogee kick motors are used by nearly every telecommunications satellite for orbital boost and station-keeping, and they provide a strong, easily accessible interface point for the SLES' linkup that is always within the satellite's center of gravity.

Orbital Recovery Corporation has identified 43 telecommunications satellites currently in orbit that are candidates for life extension using the SLES. The system also will be offered for use on new satellites, allowing manufacturers and operators to conceive such spacecraft for much longer operating periods than currently possible.

The company is targeting the first SLES mission for 2004, with two more deployments the following year and three annually after 2005.

Note how advanced technology cuts costs, reduces waste, and reduces space pollution. So what's the next step? It seems easy to imagine satellites designed to so that they can be refueled by periodic visits of refueling tugs. After all, why launch and attach a complete new set of manuevering engines and controls for each satellite when the satellite's original equipment could continued to be reused if its propellant tanks could be refilled?

Update: The SLES will not be coming to the rescue. The Astra 1K has been crashed into the Pacific Ocean.

Share |      Randall Parker, 2002 December 06 11:10 AM  Airplanes and Spacecraft


Comments
Post a comment
Comments:
Name (not anon or anonymous):
Email Address:
URL:
Remember info?

                       
Go Read More Posts On FuturePundit
Site Traffic Info
The contents of this site are copyright