September 09, 2003
Brookhaven Scientists Investigate Artificial Photosynthesis Step

Scientists at the Department of Energy's Brookhaven National Laboratory are investigating metal catalysts that use energy absorbed from photons to convert carbon dioxide to carbon monoxide.

NEW YORK, NY — Scientists studying the conversion of carbon dioxide (CO2) to carbon monoxide (CO) — a crucial step in transforming CO2 to useful organic compounds such as methanol — are trying to mimic what plants do when they convert CO2 and water to carbohydrates and oxygen in the presence of chlorophyll and sunlight. Such “artificial photosynthesis” could produce inexpensive fuels and raw materials for the chemical industry from renewable solar energy. But achieving this goal is no simple task.

“Nature has found a way to do this over eons,” says Etsuko Fujita, a chemist at the Department of Energy’s Brookhaven National Laboratory. “It’s very complicated chemistry.”

Nature uses chlorophyll as a light absorber and electron-transfer agent. However, chlorophyll does not directly react with CO2. If you take it out of the plant and place it in an artificial system, it decomposes rather quickly, resulting in only a small amount of CO production.

So Fujita and others trying to mimic photosynthesis have turned to artificial catalysts made from robust transition metal complexes such as rhenium complexes. These catalysts absorb solar energy and transfer electrons to CO2, releasing CO. But until now, no one had explained how these processes work in detail. By studying these reactions over very short and long timescales (ranging from 10-8 seconds to hours), Fujita and her colleagues at Brookhaven have discovered an important intermediate step. A most intriguing result is the involvement of two energetic metal complexes to activate one CO2 molecule. Without CO2, the complexes dimerize much more slowly than expected.

The Brookhaven scientists’ work, incorporating a combined experimental and theoretical approach, may help to explain why the reaction proceeds so slowly, which may ultimately contribute to the design of more efficient catalysts.

This work is nowhere near ready for practical application. But in my view this is a direction of research that attracts too little attention. As an energy storage form hydrogen has problems. Liquid hydrocarbon fuels have a lot of advantages. They are fairly compact and existing infrastructure can distribute them. Plus, almost all the vehicles on the road can burn liquid hydrocarbons. A technology that could cheaply convert photon energy from sunlight into liquid hydrocarbons by using the energy to fix CO2 and water into hydrocarbons would be very useful.

Share |      Randall Parker, 2003 September 09 08:26 PM  Energy Biomass

saieh davoodi said at September 10, 2004 12:55 PM:

hi.i am saideh davoodi.i and my friends are finding a way that we can make a machine that

can grows chlorophyll in its.we have some information about it.if we can make artificial

chlorophyll in lab when we will be hope that we are closer to artificial photosynthesis

i want from you that help us and say to me that do every one can make or understand artificial photosynthesis.

please reply to me with this

thank alot :saideh davoodi

Post a comment
Name (not anon or anonymous):
Email Address:
Remember info?

Go Read More Posts On FuturePundit
Site Traffic Info
The contents of this site are copyright ©