May 28, 2007
Anti-Pain Gene Therapy Reduces Osteoarthritic Damage

To the surprise of researchers a gene therapy designed to reduce pain signal transmission from arthritic joints also reduced the accumulation of damage in the joints.

Early-stage research has found that a new gene therapy can nearly eliminate arthritis pain, and significantly reduce long-term damage to the affected joints, according to a study published today in the journal Arthritis and Rheumatism. While the study was done in mice, they are the first genetically engineered to develop osteoarthritis like humans, with the same genetic predisposition that makes some more likely to develop the disease, the authors said.


In the current study, researchers found that one injection of a newly designed gene therapy relieved 100 percent of osteoarthritic pain in the study model. In addition, researchers were surprised to find that the therapy also brought about a nearly 35 percent reduction in permanent structural to joints caused by round and after round of osteoarthritic inflammation.

Yet more evidence for the damage caused by chronic inflammation. Anti-inflammatory effects of foods should be considered when trying to choose an optimal diet. Also, the results illustrate how the deterioration of an aging body feeds on itself in a vicious cycle. Damage initiates processes which cause yet more damage which initiates still more damage-producing reactions.

All they did was to increase the number of opioid receptors on nerve cells. This was done so that arthritic joints wouldn't cause pain signals to get sent to the brain.

On nerve cells for instance, certain receptors are shaped to accept naturally occurring painkillers called opioids, which when they dock, prevent the sending of pain messages along nerve pathways.

In the current study, researchers used gene therapy to increase by about one thousand times the number of opioid receptors expressed on the surfaces of nerve cells that carry pain messages back and forth between an osteoarthritic jaw joint and the spinal cord. Thus, nerve cells involved in pain transmission, with so many more receptors on their surfaces, became drastically more responsive to the naturally occurring painkiller, researchers found.

The researchers hypothesize that the chronic pain signals from a bad joint trigger an inflammation response in other parts of the body causing more joints to become arthritic. They also suspect the chronic pain might contribute to the development of brain diseases such as Alzheimer's and Multiple Sclerosis.

This result strongly suggests that better methods to control pain will slow aging. It also draws attention to the importance of inflammation in disease development (and probably argues for eating more fish more omega 3 fatty acids in order to reduce inflammation). This result also demonstrates how scientific experimentation will sometimes turn up useful results that are unexpected. Direction of scientific research does not work well with too much central planning since results are so often unforeseeable. Individual scientists deserve considerable latitude in choice of experiments.

Share |      Randall Parker, 2007 May 28 12:43 PM  Biotech Gene Therapy

Post a comment
Name (not anon or anonymous):
Email Address:
Remember info?

Go Read More Posts On FuturePundit
Site Traffic Info
The contents of this site are copyright