September 02, 2007
High Intensity Ultrasound Seals Bleeding Lung Like Star Trek Tricorder

Leonard "Bones" McCoy's medical tricorder couldn't do everything. After all, it didn't detect any readings from Trelane. But the tricorder didn't just have the ability to scan. The tricorder could heas as well (e.g. the doctor in Voyager used his tricorder to heal a "hairline fracture of the pre-maxilla bone" after Seven clobbered an alien). Well, the US Department of Defense is funding development of a portable high intensity ultrasound sound wave device to stop internal bleeding.

Engineers at the University of Washington are working with Harborview doctors to create new emergency treatments right out of Star Trek: a tricorder type device using high-intensity focused ultrasound rays. This summer, researchers published the first experiment using ultrasound to seal punctured lungs.

"No one has ever looked at treating lungs with ultrasound," said Shahram Vaezy, a UW associate professor of bioengineering. Physicists were skeptical it would work because a lung is essentially a collection of air sacs, and air blocks transmission of ultrasound. But the new experiments show that punctures on the lung's surface, where injuries usually occur, heal with ultrasound therapy.

"The results are really impressive," Vaezy said. He cautions that this is still in the early stages and the technique is not yet being tested on humans.

A focused beam of ultrasound could kill tumor cells better than x-rays because the heat of the ultrasound beam would only occur at the focus point. The intermediate tissue the ultrasound beams would pass through wouldn't suffer damage the way tissue gets damaged by radiation beams.

High-intensity focused ultrasound is now being investigated for a number of different treatments. It promises "bloodless surgery" with no scalpels or sutures in sight. Doctors would pass a sensor over the patient and use invisible rays to heal the wound. Researchers are exploring the use of high-intensity focused ultrasound - with beams tens of thousands of times more powerful than used in imaging - for applications ranging from numbing pain to destroying cancerous tissue.

In this case, lenses focus the high-intensity ultrasound beams at a particular spot inside the body on the patient's lungs. Focusing the ultrasound beams, in a process similar to focusing sunlight with a magnifying glass, creates a tiny but extremely hot spot about the size and shape of a grain of rice. The rays heat the blood cells until they form a seal. Meanwhile the tissue between the device and the spot being treated does not get hot, as it would with a laser beam.

"You can penetrate deep into the body and deliver the energy to the bleeding very accurately," Vaezy said. Recent tests on pigs' lungs showed that high-intensity ultrasound sealed the leaks in one or two minutes. More than 95 percent of the 70 incisions were stable after two minutes of treatment, according to results published this summer in the Journal of Trauma.

The University of Washington press release makes no mention of industry partners. But it does mention Department of Defense funding for this work. Well, a Seattle area company AcousTx Corporation, is working on development of an ultrasound bleed-stopping device for the Defense Advanced Research Projects Agency (DARPA) for DARPA’s Deep Bleeder Acoustic Coagulation (DBAC) program. Well it turns out that the DOD is so keen to get this technology that DOD is funding two different Seattle area teams to compete to achieve this goal.

The researchers at AcousTx, a small ultrasound company in Seattle, are funded by a four-year contract, worth up to $30 million, from the U.S. Defense Advanced Research Projects Agency (DARPA).

To underscore the pressing need, the agency gave another $21 million to a competing group, a partnership of Philips Research and the University of Washington's Center for Industrial and Medical Ultrasound.

"If this were to work, just think — just think — about the value it would have as a lifesaving device," said Michael Sekins, AcousTx vice president of research and development.

But how do they know where to focus the beam? They can't heat the entire chest without basically cooking the bleeding person to death. So how to locate the locations with dangerous bleeds?

Share |      Randall Parker, 2007 September 02 10:06 AM  Biotech Surgery

Brett Bellmore said at September 2, 2007 10:23 AM:

I would assume they run the ultrasound array in low power for imaging, identify the volume that needs treatment, and then go through cycles of high intensity, alternating with imaging to track the designated volume. Unless maybe they can continue the imaging during the high intensity phase.

Randall Parker said at September 2, 2007 11:08 AM:

Brett, Can the imaging identify exactly where the breaks are? Or does it just show that a lot of blood is pooling?

Post a comment
Name (not anon or anonymous):
Email Address:
Remember info?

Go Read More Posts On FuturePundit
Site Traffic Info
The contents of this site are copyright ©