September 13, 2007
Dubious Google Moon Rover X Prize

Google has announced a new prize for putting a rover robot on the Moon and the prize seems suspect to FuturePundit.

Nearly 40 years after the USA beat the Soviets to the moon Internet giant Google said Thursday it will give $20 million to the first private group to land a roving robot on the lunar surface a prize likely to start a 21st-century space race.

...

For a team to win the $20 million grand prize, its vehicle must ramble at least a quarter-mile over the lunar surface and send video back to Earth. A $10 million second prize is reserved for the first spacecraft that can't rove but still transmits data from moon to Earth.

Another $10 million will go to super-rovers able to perform tasks such as roaming long distances or snapping pictures of equipment discarded by astronauts.

A prize goal should be achievable and preferably by a fairly small team. Prizes aimed at motivating large teams run up against limits to how many volunteers can work together and how they can agree on just distributions of prize money among other limits. Or the prizes just end up motivating a small number of large corporations. But a $20 million prize for the size of the task isn't profitable for a large corp even if they can be assured of success (which they can't for something this difficult).

David Noland of Popular Mechanics presents 5 reasons why no team will win this prize. Among the reasons? You have to succeed by 2012. Plus, the very obvious: $20 million is peanuts compared to the cost of designing all the hardware to get to the Moon and land and cruise around. The launch cost into orbit alone is going to be a lot more than $20 million.

Google is supposed to have a very smart staff. If those smarts really were applied to designing this X Prize and they really though this through then I'm left suspecting their motive. The prize is unworkable. It is a dumb way to try to achieve the stated goal. So are they just conning us? $20 million strikes me as a small amount of money for a large quantity of otherwise free publicity.

Prizes are better designed for more achievable smaller steps that take less time and resources so that individuals and small teams with the needed set of skills can get together and work toward some goal.

Share |      Randall Parker, 2007 September 13 08:14 PM  Space Exploration


Comments
Carl Shulman said at September 13, 2007 10:32 PM:

Paul Allen spent $200 MM on his massive yacht, vastly more than on Spaceship One. It's plausible that the prize will elicit sufficient effort from technophile billionaires eager for massive reputational gains.

Andrew Price said at September 13, 2007 10:40 PM:

I think it is doable within the budget. The main cost of course is launch, but SpaceX could probably put a hundred kg on the moon for, say, $10m. As could the Russians. Building a rover would be relatively cheap. Of course none of it would be in any sense EASY :)

Andy

brian Wang said at September 13, 2007 11:06 PM:

I think this is doable. Note: the people and teams who tried to win the last xprize collectively spent more than the prize amount. The winners alone spent 2.5 times the prize the amount.

$10 million to get to orbit with a Dnepr rocket. The rules do not say that you have to make your own rocket.
550 kg (with ST-1) to Trans Lunar Injection. Not sure how much the ST-1 stage costs. May have to just take the basic rocket to ISS or slightly higher orbit with about 3000kg and then try to use low energy maneuvers from there.

Probably would have to use the Interplanetary transport network for lower power movement between the earth and the moon
A low energy transfer was achieved from the earth to the moon using the Japanese satellite Hiten

Description of the three body method to get to the moon with one tenth the fuel or using ion drive propulsion

Hiten weighed about 197kg fully fueled

A slow 5 month maneuver. You are then in lunar orbit. 500-2000kg.
You then have a small descent lander. You can make it smaller than Apollo LM modules.
No need to carry ascent module down.
No need to carry two astronauts or life support.

Mars Sojourner weighed about 11kg.

http://en.wikipedia.org/wiki/Moon_landing

You need to make a orbiter stage, descent module and a rover.

There is already a Nasa challenge on the lunar lander. Armidillo seems likely to win that.

Gary Salter said at September 13, 2007 11:26 PM:

Geeze, earth calling google...I was hoping that that announcement would have been for something like MAYBEY SUPPORTING THE MPRIZE type of X-prize (but I knew something like this moon madness might happen) ....

Don't these "smart" people know that a launch is mega expensive (just into low earth orbit costs over 200 million, if you can pick up a surplus soviet booster etc. plus all that support infrastructure).

Did I mention that space hardware (electronics, mech) is usually the domain of the military/nasa and defense contractors (40+ years of practical experience is not cheap), you can't get radiation hardened electronics at radio shack).

We need an X-prize for nano and life extention right now...something more down to earth and that people can relate to, like the baby boomers that are really getting old by now! (hello Bill Gates, Paul Allen, Warren Buffet and the Rolling Stones?)

I agree, it must have been a publicity stunt, although the pubicity for announcing an X-prize to reverse aging would have garnered a lot more interest from the general public.

After all, the future behemoth corporations that will supply us mortals with our every-decade anti-aging treatments are going to be 1000 bigger and profitable that microsoft is now!

That's the funny thing, we are probably still too early, but that can't last, there soon will be tons of companies both big and small falling over themselves trying to push the envelope and get a handle of cornering the very profitable future age-reversing market because the science and technolgy to do it is starting to show itself now.

Rob said at September 14, 2007 11:30 AM:

SpaceX thinks they'll be able to put about 1,500 pounds into lunar insertion orbit for about $8.5M (I'm guessing at exact weights, but note that a lunar insertion orbit is cheaper than circularizing a high earth orbit, because you don't need the circularization burn). For $35M, they will put a large payload into lunar insertion orbit - maybe you could share the ride with a couple other contestants.

http://www.spacex.com/falcon1.php

From http://www.jpl.nasa.gov/news/fact_sheets/mpf.pdf we see:

"At launch, the Mars Pathfinder spacecraft weighted 894 kilograms (1,973 pounds), including its cruise stage platform, heat shield, back shll, solar panels, propulsion system, low and high gain antennas, lander, rover, parachute, airbags and 94 kilograms (207 pounds) of fuel."

I'd clone that thing as closely as possible (cutting lots of corners because you don't need to live long once you get there). You can't aerobrake, but you're only dealing with half the gravity and you can still use the airbag landing. Since the prize is just for roving, you wouldn't need a lot of mass spectrometers and stuff like that, so the rover could be pretty simple (WIFI back to the lander?). No solar power for the rover, just one battery charge and you're done.

The problem with this prize is that you need someone willing to speculate (donate) $20M on the off chance of winning the prize. That's a higher barrier to entry than these prize competitions usually have.

Walt Guyll said at September 14, 2007 11:31 AM:

A wider stance in the solar system may be essential for life extension.

Randall Parker said at September 14, 2007 6:00 PM:

Gary Salter,

Yes, the Methuselah Mouse Prize is a much worthier recipient of $20 million of Google money.

I can think of many prize goals in biomedical research that would do a lot more than a trip of a small robot around some Moon terrain. Prizes for stem cells, gene therapy, xenotransplantation of lysozymes, or how about a drug to cure a form of cancer?

Outside of biomedical I think there should be prizes for achieving higher efficiency solar cells based on various materials. Make separate prizes for efficiency gains in organic, thin films, crystalline silicon, and multijunction photovoltaic materials.

Walt Guyll,

We aren't going to have enough time individually to travel around the solar system unless we first develop rejuvenation therapies.

gaetano marano said at September 16, 2007 11:04 AM:

.

Hey Google, the Moonrovers Prize was MY idea!!!

http://www.ghostnasa.com/posts/008moonprize.html

the article includes the email that shows the truth

.

James Bowery said at September 17, 2007 11:36 AM:

HR2674 was the bill that became PL101-611, the Launch Services Purchase Act of 1990, which the primary sponsor, Rep. Ron Packard, credited to my group, the Coalition for Science and Technology, in his introduction of my testimony in Congressional hearings held July 31, 1991. It was motivated by a desire to change the paradigm of funding by government and nongovernmental agencies to prize awards starting with a focus on commercial purchases. The following, written in 1989, is a generalization of that idea to include everything from DNA sequencing to space science including lunar exploration which I called "The National Science Trust". It's interesting that Google has now backed prizes for DNA sequencing as well as lunar exploration.

I disagree that the Google prize is too big. Centralization of wealth has gotten so far out of hand that it is high time companies with ionospheric market capitalization start putting up prize awards to really challenge the lesser, but still enormous, central repositories of capital to do something other than buy another few concubines for their overcompensated CEOs.

PS: I'm not going to claim credit for originating the resurgence of interest in prizes for space activities. That honor most probably belongs to Jerry Pournelle's "Citizens Advisory Group" that, during the early years of the Reagan Administration, proposed an orbital launch incentive consisting of a certain amount of money paid per unit mass sent to orbit, as an alternative to launch vehicle development programs funded by the government.

Newsgroups: sci.space
From: j...@pnet01.cts.COM (Jim Bowery)
Date: 9 Dec 89 00:41:51 GMT
Local: Fri, Dec 8 1989 5:41 pm
Subject: The National Science Trust (long)
Reply to author | Forward | Print | Individual message | Show original | Report this message | Find messages by this author

The recent talk about "prizes" and "subsidies" and the consequent
enthusiasm it has generated, motivated me to publicly release the
following white paper which has been in circulation among some of
the people involved with HR2674. As this paper will make clear,
it is better to give money for value received than it is to award
"prizes" or provide "subsidies."

Of course, the approach described here won't work for everything,
but it will work for a surprising range of science and technology
areas.

-----------------------------------------------------------------

The National Science Trust

A Science and Technology Policy White Paper

By James A. Bowery

(Copyright 1989)
(The public may copy and excerpt, but not modify this document.)

Policy Statement

For the enhancement of scientific knowlege and the required development
of advanced technology, A National Science Trust shall be established,
with funding authorized by Congress, for the purchase of information
about the natural world from Eligible Parties (private entities owned
and controlled by other such entities in the U.S. or its unified free-
trade partners). No less than 2/3 of the components and services used
by the Eligible Parties to acquire this information must be obtained
from other Eligible Parties.

The National Academy of Sciences shall identify areas of scientific
interest in which the quality of research results are quantifiable --
primarily in terms of information content. Examples of these
kinds of research results are: DNA sequencing (human genome project),
digital imaging of various phenomena (astronomical, planetary,
terrestrial ozone-layer monitoring), quantitative behavior of systems
in microgravity, quantitative mineral assay of various sites
(terrestrial and nonterrestrial), etc.

A dollar amount, to be established in conjunction with Congress, shall
be associated with each informative item and with varying degrees
of accuracy of the information. That dollar amount will then be
appropriated to The Trust to be paid out only in the event that
an Eligible Party has delivered new information on the associated item of
interest to a designated recipient. When a measurement has already
been made, payout will be limited to information value corresponding
to the increased confidence level of the measurement (e.g. additional
significant bits or fractions thereof). In areas where an information
flow is required (periodic sampling) the value of various sampling
frequencies at the various degrees of accuracy (significant bits) will
be included in the valuation of the measurement. Duplicate information
flows will share the cash flow evenly. For superior information flows,
the incremental increase in accuracy will enjoy less diluted access to
funding flows allocated to those incremental increases in accuracy.

Income on The Trust will be used to adjust The Trust for inflation.
Additional income from The Trust may be used to fund items within
The Trust. In the event that an item is measured by a Party which
is not an Eligible Party, and that information is available to the
designated recipient -- the corresponding funding will be redistributed
within The Trust. After-inflation losses will be redistributed within
The Trust, deactivating items which are not currently being pursued by
any Eligible Party.

Lunar Mapping Corporation: A Plausible Scenario

Here is a plausible scenario as an illustration of how The Fund might
work with private industry to provide scientific results and also to
enable commercial technology development:

Among many other items of interest, NAS examines the idea of
a Lunar Hydrogen Map. It generates a function mapping spatial
and grey-scale resolutions to relative scientific value. In conjunction
with Congress, total scientific value is translated to dollar value of
$150 million. There being reason to believe Eligible Parties can pursue
the acquisition of a Lunar Hydrogen Map based on available funding and
other related items, Congress appropriates the corresponding funds to
The Trust. The recipient is designated to be the NASA Space Engineering
Research Center for Utilization of Local Planetary Resources. NAS,
having gone through a similar exercise for a large number of other
measurements, has also succeeded in convincing Congress to fund optical,
infrared and ultraviolet maps (along with a myriad of other measurements
in space and on Earth). The Trust, in its first year, contains $3 billion
with a total of $250 million allocated to lunar mapping items.

Some young engineers, dissatisfied with the slow pace of activity at JPL,
realize they can obtain a map of hydrogen and also higher resolution maps
of the moon in infrared, optical and UV wavelengths than previously acquired,
all in one mission. Plugging their accuracies into the corresponding value
functions, they calculate a total value for their potential mission at $200
million. Comparing this value to the cost of flying the mission (including
the development of some new imaging technologies) and the estimated time until
they get paid, adjusting for interest rates, they believe they can provide,
a profit of $75 million on an investment of $125 million within one year.
They also project that with the probable addition of future Trust items
such as similar Mars maps and more specialized follow-up Lunar mapping,
there will be even higher profits within 5 years.

Some major potential investors, being suspicious of the new imaging
technologies that would be required, ask that the engineers demonstrate the
imaging technologies prior to entering a business venture based on them.
Other investors, including Space Studies Institute, are willing to
bet the engineers can solve the technology problem and go ahead with the
formation of Lunar Imaging Corporation whose first task is to demonstrate
the feasibility of the imaging systems. These investors enjoy the acquisition
of a large share in the corporation with a low-cost, high-risk buy in. The
technology is demonstrated and patents applied for within 2 months. LIC's
stock doubles in value as the more cautious, larger investors chip in, buying
out some of the high-risk investors who have a number of similar technology
development opportunities to go after. One of the imaging patents is
licensed to a firm that sells manufacturing inspection systems for quality
control. The cautious investors capitalize LIC at $140 million even though
the technology is demonstrated and it is already making sales.

LIC makes a public announcement that it is planning to acquire the
4 Lunar maps funded by the Trust, within 10 months based on a patented
imaging technology. Lockheed, Rockwell and TRW drop their competing
feasibility studies after looking into the patent disclosures and the
backgrounds of LIC's founders and investors.

The space transportation requirements of the mission are put out to bid
and a number of Eligible Parties respond. Some aerospace consultants
are hired to evaluate the credibility of the bids. They discard the
one by Gary Hudson, Inc., even though it was the lowest, because it
would probably explode on the pad and thus could not be insured. Art
Dula's company provides the most credible bid, but being based on
the Soviet Proton, his company is declared Ineligible. Mr. Dula considers
a law suit but finds other business with a Canadian firm. LIC's consultants
settle on a proposal from Launch Integrators, Inc. LII uses an Orbital
Sciences upper stage and a booster from Trump Space Services Inc. (which
bought AMROC at the auction block when it went bankrupt, replacing all
management) contingent on 3 successful flights of the hybrid booster
within the next 6 months. Since LII adheres to the ANSI Payload Mounting
Standard, LIC can fall back on a higher bid by General Dynamics using its
Centaur upper stage, upon which the Standard was based.

Fabrication of the Lunar Multispectral Mapper begins as Trump Space
Services, being under the same 6 month deadline from several other
customers, hires back Jim French and a number of other AMROC old-timers
with compensation for the inconvenience of immediately quitting their
current jobs and relocating (most of the best people left AMROC before
it went belly-up and hold jobs in other parts of the country). Some
bureaucrats from Johnson Space Center, continuing NASA's old habits, attempt
to intimidate some of TSSI's vendors by questioning "the feasibility of
awarding your company follow-on contracts." Donald Trump and investment
partners, hearing of this subtrifuge, pull some strings in Washington and
the FBI initiates an investigation. Suddenly, products are flowing from
TSSI's vendors and the first booster test firing takes place within 3
months -- only one month late. It fails, but 4 other boosters are
already in winding with one going through final check out. The problem
with the first system is analyzed and found to be a faulty pump from
one of the intimidated vendors. TSSI's engineers discover the original
blueprints unnecessarily used an aerospace pump that could be replaced
by a standard industrial LOX pump from a company with no aerospace
connections. They do an appropriate engineering modification on the
remaining boosters. They are delayed another month.

LIC takes delivery on the last of the LMSM components and is
far enough along in fabrication that integrated subsystem testing begins
in earnest. The new-technology gamma-ray spectrometer, experiences some
reliability problems due to tricks used to lower its high power requirements.
One of the major investors ($25 million) gets antsy and withdraws. Jim
French, familiar with the engineers from his JPL days and their patent, is
confident they can resolve the reliability problem in short order and talks
the Board of Directors of TSSI into pulling together a stop-gap purchase of
LIC stock at a low price. The engineers determine they can increase
reliability if they have more electrical storage capacity. They replace the
light-weight storage system with a reliable automotive lead-acid battery
system which weighs a lot more -- but there will be excess payload capacity
on either launch service anyway. The reliability problem is resolved and the
skitish investor wants back in. The other LIC investors, concerned about a
potential conflict of interest with TSSI representatives on the Board, buy
back TSSI's holding at a higher price, reselling it to the conservative
investor. TSSI walks off with a viable customer and a 25% return on $25
million in 2 months.

TSSI has its first successful test.

LIC completes system integration and starts system testing. No major
problems.

TSSI has its second successful test.

LIC's CEO decides that TSSI's two month delay will not allow them to
meet the 6 month deadline and contacts Ed Bock at General Dynamics
about the possibility of a fall back launch on an Atlas-Centaur. It
turns out that a NASA TDRS is behind in fabrication and an Atlas-Centaur
is available from their production stream within LIC's calendar
requirements. LIC's CEO negotiates a $5 million reduction on GD's
bid and places a $1 million retainer on the launch opportunity in
case TSSI fails to meet the 6 month deadline.

The 6 month deadline passes. TSSI doesn't launch on time.

Being unwilling to incur the additional interest expenses imposed by
further delays, LIC's CEO exercises his cancellation clause with LII and
his retainer on GD's launch slot. GD's integration people begin
modifying the Centaur's upper stage back to the ANSI Standard (it had been
modified from the Standard for TDRS because NASA could not adhere to the
Standard). The more conservative investors are relieved. Fortunately for
LII and TSSI, as a result of the passage of the Space Transportation
Services Act, they have several payloads contracted with DoD and SDIO,
which are not sensitive to amortization schedules. TSSI and LII stay in
business.

The experienced GD ops people have no trouble pulling off a successful
launch. The LMSM maps the lunar surface in all 4 spectra within 2
months. However, upon presentation of the maps to SERC, a fourier
analysis of the the hydrogen map finds that it contains a more noise
than was expected. Instead of acquiring to an accuracy of 3 bits per
pixel, it has acquired only 2 good bits per pixel. After putting this
accuracy into the valuation function established by the NAS, LIC is
awarded only $150 million of the expected $200 million for the whole
mission.

The noise LIC engineers determine it is gaussian in nature and therefore
they can recover the third bit (and the profitability of the venture)
by gathering 4 more samples of their hydrogen map -- averaging
out the noise. They acquire additional samples and deliver them
to SERC which then authorizes the release of additional funds from
the Trust. Over the next 8 months, the remaining $50 million is
awarded to LIC. At the same time, additional quality is averaged into
the other maps resulting in a $5 million bonus. LIC determines that the
cost of continued operation of LMSM will more than pay for itself by the
acquisition of an additional fractional bit in the hydrogen map, and
continues gathering data. However, the flakey gamma-ray spectrometer
gives out before they have acquired the next quantum in the valuation
function, and they have to write off those additional operation expenses
as a loss. They store the additional data in a vault on the unlikely
chance that another firm may find it valuable in achieving the next
quantum in the Lunar Hydrogen Map valuation function.

End of Scenario

Summary

As illustrated in the above scenario, a National Science Trust
could not only provide timely and valuable scientific data at a
reasonable and predictable cost to the U.S. government, but it
would spur the development of new, commercially useful, technologies
under the disciplines of the private sector, rather than the
environment of government contracting, which has proven itself
to be less efficient.

-----------------------------------------------------------------

---
Typical RESEARCH grant:
$
Typical DEVELOPMENT contract:

Dhandi said at March 27, 2008 4:25 PM:

I believe the entire idea behind the X prizes, or those inspired by the X prizes, are to encourage smaller, independant space exploraton. It is designed to encourage us to do things cheaper, because it can be done. Look at Burt Rutan and Space Ship One. The low budget and overcoming the difficulty is the whole point.

Post a comment
Comments:
Name (not anon or anonymous):
Email Address:
URL:
Remember info?

                       
Go Read More Posts On FuturePundit
Site Traffic Info
The contents of this site are copyright